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Abstract. We present new simulation results on a hard-sphere system at high densities. Using
three-time correlations, we can account for the anomalous diffusion, which results from a
homogeneous back-dragging effect. Furthermore, we calculate the non-Gaussian parameter and
connect it to the existence of dynamic heterogeneities.

1. Introduction

In recent years the nature of the non-exponential relaxation of glass-forming liquids close to
Tg has been elucidated by a variety of experimental techniques; see [Edi96] and [Böh98]
for an overview. One way of getting additional information is to analyse three-time
correlation functions in addition to the standard two-time correlation functions, as realized
in multidimensional NMR experiments. On this basis it is possible to decide whether the non-
exponentiality is mainly due to a homogeneous scenario (intrinsic non-exponentiality related
to systematic back-and-forth dynamics) or a heterogeneous scenario (superposition of different
exponential processes). In a previous publication [Dol98] these concepts have been applied
to computer simulations of a hard-sphere system which is well represented experimentally
by colloidal suspensions [Meg91]. We observed that the dynamics at short times (theβ-
regime) is dominated by the presence of a cage formed by surrounding particles. This results
in a systematic back-dragging effect, corresponding to a mainly homogeneous scenario. In
theα-regime most particles have escaped their initial cages. Then they encounter fast or slow
regions in the liquid, arising, e.g., from inhomogeneities in density. The simplest model for this
situation would be an ensemble of independently diffusing particles with different mobilities.

The goal of the present work is to quantify the hard-sphere dynamics in terms of
homogeneous and heterogeneous contributions for all timescales. In an extension of our
previous work, we introduce appropriate measures for homogeneous and heterogeneous
contributions. They help to elucidate the physics of the sublinear diffusion in theβ-regime
and the non-Gaussian parameter.

2. Simulation details

We perform conventional Monte Carlo dynamics with periodic boundary conditions on a
system of a thousand hard spheres with a size polydispersity of 10%. The algorithm is described
in [Cic90, Dol98]. For theβ- andα-regimes, the mean step size has been chosen to give an
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acceptance rate of 50% for each move. We checked that, apart from an overall scaling, the
dynamics is not influenced by changing the mean step size for these time regions.

At very short times, we perform separate simulation runs with a reduced step size, in
order to obtain the microscopic dynamics. This is necessary, because we want to define a
density-independent timescale by fixing the short-time diffusion constant, i.e.〈r2(t)〉 = 6D0t ,
wheret is very small. We useD0 ≡ 1

160 and set the unit of length equal to the mean particle
diameter, as was done by Fuchset al [Fuc98].

The highest density analysed in this paper isφ ≡ 〈 43πR3
i 〉N/V = 0.58. At this high

packing fraction, we have chosen a very long equilibration time (5×107 MCS) to avoid aging
effects occurring during the measurement. Interestingly, the non-Gaussian parameter (NGP)
turns out to be a very sensitive indicator for the degree of equilibration.

In figure 1 we plot the incoherent scattering functionF2(t) = 〈cosEq(Er(t) − Er(0))〉 for
q = 2π and the mean square displacement, clarifying the timescales of our simulations.

Figure 1. (a) The two-time correlation functionF2(t) = 〈cosEq(Er(t)− Er(0))〉 for q = 2π which is
close to the maximum of the structure factor. The curves are plotted for the densitiesφ = 50, 53, 56
and 58%, from left to right. (b) The mean square displacements〈r2(t)〉 for the densities in (a),
again from left to right.

3. Three-time correlations: the homogeneous part

As shown in our recent work [Dol98], we can gain new insight into the dynamics by
analysing three-time correlation functions. For a given timet we define the conditional prob-
abilitiesp‖(Er12 · r̂01|r01; t), p⊥(Er12 · û01|r01; t) andpzz(z12|z01; t) with Ermn ≡ Er(nt)− Er(mt),
rmn ≡ |Ermn|. Herêu01 is an arbitrary vector perpendicular toEr01, the hat denoting a unit vector.
We introduce the abbreviationsx12 ≡ Er12 · r̂01 andy12 ≡ Er12 · û01 for later purposes. Thus,
p‖(x12|r01; t) denotes the probability that a particle moves during the second time interval
the distancex12, projected onto the vector̂r01, under the condition that it covered a distance
r01 in the first time interval. The probability functionp⊥(y12|r01; t) is defined analogously,
yielding information about the distancey12 travelled perpendicular to the first step. Finally,
pzz(z12|z01; t) includes the information about the projection of both steps onto a randomly
chosen direction.

For non-exponential relaxation, as displayed by supercooled liquids, memory effects are
present, resulting in a strong dependence ofpzz andp‖,⊥ on z01 andr01, respectively. We see
the typical situation in figure 2, where all of these probability distributions are shown for a
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Figure 2. The conditional probabilitiespzz(z12|z01; t), p‖(x12|r01; t) andp⊥(y12|r01; t) for a
time t ≈ 400 in theβ-regime, wherex12 ≡ Er12 · r̂01 andy12 ≡ Er12 · û01. z01 andz12 denote the
projections of the subsequent displacements onto an arbitrary direction. The dark areas correspond
to high probabilities. The average valuesczz(z01), c‖(r01) andc⊥(r01) are indicated by the light
traces. Note that the unit of length is greater than that used in [Dol98] by a factor of 2.

density ofφ = 58% at a timet ≈ 400 in theβ-region. The main features of these plots are the
non-zero displacements,czz(z01) ≡ 〈z12〉, c‖(r01) ≡ 〈x12〉 andc⊥(r01) ≡ 〈y12〉 as indicated,
and the widthsσzz(z01), σ‖(r01) andσ⊥(r01), where, e.g.,

σ 2
‖ (r01) ≡

∫
dx12 p‖(x12|r01)(x12− c‖(r01))

2.

The dependence ont of these quantities should be kept in mind.
As expected from the definition ofp⊥, the value ofc⊥(r01) must be zero. We

discussed in [Dol98] the fact that in the heterogeneous limit there is no back-dragging effect,
i.e.czz(z01) = c‖(r01) = 0, whereas in the homogeneous case we haveσzz,‖,⊥(r01) = constant
andczz,‖(r01) = constant.

As shown in [Dol98],czz(z01)—which, by the way, is equal toc‖(r01)—can account
for anomalous diffusion in theβ-domain. To be precise, we made use of the fact that
czz(z01) ≈ −cz01, wherec = c(t) is a constant. If we additionally assume thatpzz(·|z01)

is Gaussian with constant widthσzz(z01) = σ , straightforward integration yields a connection
betweenc(t) and the approximate logarithmic slope

β(t) ≡ ln〈r2(2t)〉 − ln〈r2(t)〉
ln 2t − ln t

≈ d

d ln t
ln〈r2(t)〉

of the mean square displacement, namely,

β(t) ≈ 1 +
ln(1− c(t))

ln 2
. (1)

This estimate becomes incorrect for longer times, because the back-dragging is not linear
any more. Mainly, this is the case because the particles start to leave their cages, which results
in a more complex behaviour. This may explain the deformation ofczz(z01) andc‖(r01), which
now look more like the first part of a negative sine function. To account for this effect, we
define an ‘effective’ slope ofczz(z01), namely,

ceff(t) ≡ −
(∫

dz01 p(z01)z01czz(z01)

)/
〈z2

01〉 (2)
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where all quantities depend ont .
Usingceff(t) instead ofc(t) as input for equation (1), the approximation forβ becomes

exact. With〈r2(t)〉 = 3〈z2
01〉 = 3〈z2

12〉, we find that

〈z2
02〉 = 〈(z01 + z12)

2〉 = 2(〈z2
01〉 + 〈z01z12〉)

⇔ 〈z
2
02〉
〈z2

01〉
= 2

(
1 +
〈z01z12〉
〈z2

01〉
)

⇔ β ≡ ln〈z2
02〉 − ln〈z2

01〉
ln 2

= 1 +
ln(1 + 〈z01z12〉/〈z2

01〉)
ln 2

= 1 +
ln(1− ceff(t))

ln 2
.

If we had a purely heterogeneous scenario, where the conditional probability for the second
move only depended on the length of the first one, i.e.pzz(z12|z01; t) = pzz(z12||z01|; t), then
we would have

〈z2
01〉ceff(t) =

∫
dz01 dz12 pzz(z12||z01|)p(z01)z01z12 = 0

becausep(z01) is an even function. Therefore,ceff(t) can be regarded as an appropriate
measure for homogeneous contributions, and in the linear case it reduces to the slopec(t).
Hence homogeneous contributions strongly influence the nature of the anomalous diffusion.

4. The non-Gaussian parameter

A way to approach the high-density features of the self-part of the van Hove correlation function
is to analyse the non-Gaussian parameter

α2(t) ≡ 3〈r4(t)〉
5〈r2(t)〉2 − 1.

It measures the deviation from Gaussian behaviour and consequently has to vanish fort → 0,
because the dynamics on the very microscopic scale is Brownian by definition.

The NGP has been calculated for other systems, e.g. Lennard-Jones liquids [Kob95] and
soft discs [Hur96]. In every case, a maximum has been found in theβ-region, which becomes
more pronounced as the temperature becomes lower.

In figure 3(a) we seeα2(t) forφ = 56% as a dashed curve. It clearly does not decay to zero,
but assumes a valueα2(∞) ≈ 0.15. However, we must be careful with the definition ofα2,
because the polydispersity can cause a trivial non-Gaussianity, due to a size-dependent particle
mobility. Therefore, we should calculate the NGP for every particle diameter separately, and
take the mean value over the size distribution afterwards; that is,

α2,poly(t) ≡ 〈α2,R(t)〉R.
Figure 3(a) shows this quantity for comparison. Thus, at this density,α2,poly(∞) = 0. The
other two curves show the NGP, averaged over the 15% largest and the 15% smallest particles,
respectively. Differing in their maximum values by about 10%, they exhibit a time separation
of their maxima by a factor of three. Kob and Andersen have found the same dependence for
their binary Lennard-Jones mixture [Kob95].

In figure 3(b), we seeα2,poly(t) for different volume fractions in a double-logarithmic
plot. For small times, one perceives a linear ascent which corresponds to an exponent of
approximately 0.3. Later on,α2,poly reaches its maximum value at a timetα2 in the lateβ-
region and then slowly decreases again. As we can see, the maximum value ofα2,poly grows
with the density, i.e.α2,max= 0.17, 0.24, 0.56, 2.33 forφ = 0.50, 0.53, 0.56, 0.58, respectively.
This strong dependence indicates a tremendous change of the dynamics for densitiesφ > 0.56.
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Figure 3. (a) The non-Gaussian parameterα2 ≡ (3〈r4〉)/(5〈r2〉2) − 1 for densityφ = 56%,
calculated in different ways. Forα2,small, α2,big andα2 the average is over the 15% smallest, the
15% biggest and all particles, respectively. Forα2,poly the different sizes are treated separately,
with the averaging performed afterwards, as discussed in the text. (b) The NGPα2,poly for the
densitiesφ = 50, 53, 56 and 58%, from bottom to top. Notice that the axes in (a) and (b) have
been chosen to be logarithmic.

5. Three-time correlations: the heterogeneous part

It has been suggested that the value ofα2(t) is intimately connected with the existence of
dynamic heterogeneities. For example, Hurley and Harrowell used a model of fluctuating
mobilities to account for the non-Gaussian effects in a two-dimensional liquid [Hur96].
However, there are a few input parameters for this model, which must be adjusted to explain
the simulation results, e.g. the functional form of the mobility autocorrelation.A priori, it
is not clear to what extent the concept of fluctuating mobilities is reasonable, and a deeper
understanding is still necessary to clarify the underlying physical mechanisms.

Again we analyse three-time correlations, now employing the information content of the
widthsσzz,‖,⊥. The important observation in figure 2 is that the length of the first step of a tagged
particle has an influence on the mean size of its subsequent step, i.e.σzz(z01) andσ‖,⊥(r01) grow
with z01 andr01, respectively. This can be understood in the following way. A fast particle
in the first time interval on average remains fast during the second time interval, and so, by
looking atpzz(·|z01) or p‖,⊥(·|r01) for largez01 or r01, we select the most mobile particles. If
we now calculate the degree to whichσzz andσ‖,⊥ grow withz01 andr01, respectively, we have
a direct measure of to what extent the dynamics is ruled by heterogeneities. For this purpose
we define the quantity

a(t) ≡ 〈σ
4〉 − 〈σ 2〉2
〈σ 2〉2 (3)

where the brackets denote an average over the first step, i.e.〈· · ·〉 ≡ ∫
dr01 · · ·p(r01) or

〈· · ·〉 ≡ ∫
dz01 · · ·p(z01). Here, a, σ andp have indiceszz, ‖ or ⊥, depending on the

probability function that is being analysed. (Note that a constant widthσ results in a vanishing
a(t).)

Figure 4 showsa‖(t) anda⊥(t) for the densityφ = 0.58. We see that the broadening
with r01 along the direction of the first step is greater than that perpendicular to it, resulting in
a larger value ofa‖(t). For longer timest > τα, however, the two curves coincide, indicating
that there is no motional anisotropy with respect to the previous step any more. Collective flow
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Figure 4. The quantitiesa‖(t) anda⊥(t), as defined in the text, for the densityφ = 58%. The
difference between the maximum values illustrates the fact that heterogeneities at intermediate
times possess a directionality. For times greater thanτα ≈ 2×104, the two curves meet each other,
indicating the loss of anisotropy.

patterns, as observed for example by Donatiet al [Don98], could cause such a directionality
at intermediate times.

It is clear thata(t) 6= 0 should imply a non-vanishing NGPα2(t). Figure 5 shows the
relation betweenα2 and the averageda3d(t) ≡ (a‖ + 2a⊥)/3. This surprising similarity of the
time dependences of the two curves, suggests a deep physical connection. For a molecular

Figure 5. The averageda3d ≡ (a‖ + 2a⊥)/3, compared with the NGPα2 and the effective slope
ceff (t) for densityφ = 58%. a3d andα2 show the same behaviour with time, their maxima falling
into the lateβ-region. ceff (t), in contrast, is large only for timest < τα . Note that the units are
arbitrary.
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liquid, a similar observation has already been reported by Qianet al [Qia98], using another
quantity similar toa3d(t). ceff(t) is shown to allow a comparison of dynamical time regimes,
reflecting the homogeneous contributions to the complex relaxation process.

6. Discussion

As a major result of this work we were able to quantify the homogeneous and the heterogeneous
contributions to the non-exponential relaxation. We found that the anomalous diffusion is
mainly related to homogeneous contributions, explicitly expressed by equations (1) and (2),
whereas the non-Gaussian effects, displaying a maximum for the crossover betweenβ- and
α-relaxation, are mainly related to the heterogeneous contributions. This directly shows that,
for the system studied in this work, the non-Gaussian effects, if present at all, are only mildly
related to jump contributions. The maximum value ofα2 is of the same order as for the case of
Lennard-Jones systems [Kob95]. There remains the interesting question of whether also for
the Lennard-Jones systemα2 is mainly determined by heterogeneous contributions.

Relating the anomalous diffusion to homogeneous contributions, as discussed above, is
only valid for stationary processes. As outlined, e.g., in reference [Ric94], continuous-time
random walks, which by definition are purely heterogeneous in nature, are also able to generate
anomalous diffusion behaviour. This, however, explicitly requires non-stationary conditions.

We would like to mention thata(t), defined in equation (3), only takes into account
heterogeneous contributions, related to ther01-dependence ofσ‖,⊥(r01), and neglects
contributions resulting from ther01-dependence ofc‖(r01). A simple model system with
σ‖,⊥(r01) = constant andc‖(r01) ∝ −r01 is an ensemble of diffusive particles in identical
harmonic potentials [Dol98]. The dynamics is purely Gaussian, i.e.α2 ≡ 0. Here the
heterogeneity is related to the fact that particles which, by chance, are far away from the
centre of the potential will experience a strong back-dragging force and will hence on average
move further in the near future. As discussed in [Heu97], this effect can be also observed for the
Rouse model of polymer dynamics. Note that on a qualitative level this type of heterogeneity
is distinct from the type expressed by ther01-dependence ofσ‖,⊥(r01) for which the different
mobilities are related to different environments.
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